Copyright in generative deep learning

نویسندگان

چکیده

Abstract Machine-generated artworks are now part of the contemporary art scene: they attracting significant investments and presented in exhibitions together with those created by human artists. These mainly based on generative deep learning (GDL) techniques, which have seen a formidable development remarkable refinement very recent years. Given inherent characteristics these series novel legal problems arise. In this article, we consider set key questions area GDL for arts, including following: is it possible to use copyrighted works as training models? How do legally store their copies order perform process? Who (if someone) will own copyright generated data? We try answer considering law force both United States European Union, potential future alternatives. then extend our analysis code generation, an emerging GDL. Finally, also formulate practical guidelines artists developers working art, well some policy suggestions policymakers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Deep Deconvolutional Learning

A generative model is developed for deep (multi-layered) convolutional dictionary learning. A novel probabilistic pooling operation is integrated into the deep model, yielding efficient bottom-up (pretraining) and top-down (refinement) probabilistic learning. After learning the deep convolutional dictionary, testing is implemented via deconvolutional inference. To speed up this inference, a new...

متن کامل

Learning Deep Generative Models

Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...

متن کامل

Learning Deep Generative Models

Learning Deep Generative Models Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many AI related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architec...

متن کامل

Generative NeuroEvolution for Deep Learning

An important goal for the machine learning (ML) community is to create approaches that can learn solutions with human-level capability. One domain where humans have held a significant advantage is visual processing. A significant approach to addressing this gap has been machine learning approaches that are inspired from the natural systems, such as artificial neural networks (ANNs), evolutionar...

متن کامل

Generative learning for deep networks

Learning, taking into account full distribution of the data, referred to as generative, is not feasible with deep neural networks (DNNs) because they model only the conditional distribution of the outputs given the inputs. Current solutions are either based on joint probability models facing difficult estimation problems or learn two separate networks, mapping inputs to outputs (recognition) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data & policy

سال: 2022

ISSN: ['2632-3249']

DOI: https://doi.org/10.1017/dap.2022.10